Um cliente improvável também pode se tornar case de sucesso

Da autobiografia de Scott Adams

“Meu nível de paixão mudou com meu sucesso. 

O sucesso causou paixão mais do que a paixão causou sucesso”

O que tirei disso, adaptado a #customersuccess :

-Um cliente advogado da marca muitas vezes não começa apaixonado pela marca. 

-Essa espécie de paixão vai acontecendo através dos resultados, do sucesso alcançado, e de preferência com experiências positivas nas interações.

Já vi acontecer algumas vezes: o maior case de sucesso em um período foi aquele cliente que entrou sem muito alarde e gerou um resultado fantástico – e o cliente com mais expectativa acabou não vingando como imaginávamos. 

Já aconteceu por aí?

How to Fail at Almost Everything and Still Win Big (Scott Adams) – Frases de Livros

Scott Adams, criador das tirinhas de Dilbert escreveu essa divertida e prática autobiografia para falar sobre sucesso.

Através de uma narrativa divertida e interessante, o autor vai navegando em tudo o que fez ou deixou de fazer desde a monótona carreira como funcionário até a criação de Dilbert.

A grande sacada do livro, definitivamente é organizar a vida via Sistemas e não Metas (objetivos) – ideia essa ressaltada algumas vezes.

O livro só está disponível em inglês hoje em dia, mas vale muito a pena. Minhas melhores frases grifadas no Kindle estão abaixo, em tradução livre (português):

-Mas você também pode notar alguns padrões familiares em minha história que lhe darão a confirmação (ou viés de confirmação) de que seu próprio sucesso não foi inteiramente sorte. Esse é o tipo de validação que você não pode obter de sua família e amigos que o vêem como uma bagunça.

Continuar lendo How to Fail at Almost Everything and Still Win Big (Scott Adams) – Frases de Livros

Introdução a Metodologia Birdie

Escrevi este post não público para organização e estudo dos conceitos e funcionamento da solução Birdie.

A Birdie.ai permite que gerentes de produto tenham controle sobre o ciclo de vida de um produto.

O software da Birdie processa opiniões de consumidores através de diversas fontes, categorias e marcas para trazer uma tecnologia completa.

Grandes volumes de dados se transformam em insights acion´áveis para a tomada de decisão e priorização de equipes de produto.

1.Classificação da Inteligência Artificial na Birdie

Como citamos anteriormente, a matéria-prima da Birdie é opinião sobre produto.

A tecnologia Birdie se baseia em um conceito de análise chamado ABSA – Aspect-Based Sentiment Analysis. São 2 características dessa análise:

  • Ser granular, ou seja, 1 opinião pode ter trechos distintos para análise
  • Ter um detalhamento maior de cada opinião

A tecnologia da Birdie conta com 3 pilares de classificação para opiniões como a que vimos acima. Os pilares são:

a) TAXONOMIA

A Taxonomia garante que consigamos capturar aspectos destacados de certa opinião.

Ex: “Essa nova versão da geladeira é muito boa. Recomendo. O freezer funciona muito bem e resfria os alimentos rapidamente“.

Se parássemos aí estaríamos simplificando demais, e por isso utilizamos de Contexto e Sentimento também.

b) CONTEXTO

Garante que consigamos entender o contexto da opinião, com base na taxonomia. Utilizado para palavras-chave iguais com significados diferentes.

É importante lembrar que muitas soluções de social listening só capturam Taxonomia, sem Contexto e Sentimento. E a Birdie tem um grande diferencial já aqui.

Ex: “Este produto vale a pena”

e

Ex: “Não aproveitei tanto pois não consegui usar meu vale-alimentação para usar esse produto”.

O Contexto identificaria que “vale” tem significados diferentes, apesar de ser a mesma palavra.

c) SENTIMENTO

Afinal, tal opinião foi positiva, neutra ou negativa? O Sentimento vai nos ajudar com isso.

Ex: “Me espatifei no chão com este patinete elétrico. Não recomendo” traz claramente um sentimento negativo, o que é muito relevante na classificação.

Importante lembrar que 1 opinião pode ter diferentes sentimentos.

Ex: “Paguei barato por causa da Black Friday, mas a entrega atrasou 2 meses”.

Aspecto preço: positivo

Aspecto entrega: negativo

Em resumo, qualquer opinião que passar pela Birdie vai navegar por esses 3 pilares, utilizando da análise ABSA.

Recomendo este artigo para aprofundamento na análise ABSA.

2.Predição e Machine Learning

Dentro da Birdie possuímos “Predição” através do aprendizado de máquina (Machine Learning).

Em outras palavras, nossa Inteligência Artificial consegue aprender e evoluir a cada análise feita para refinar e trazer cada vez mais confiança nos dados gerados – e por consequência, insights certeiros para cada objetivo que os clientes Birdie possuem.

a) A precisão da Birdie

Hoje em dia a versão em inglês da Birdie acerta 80% das análises.

Ou seja:

  • De cada 100 análises, 20 poderiam ter sentimentos trocados (era neutro mas ficou positivo, por ex.)
  • De cada 100 análises, 80 tem sentimentos corretos (era neutro e permaneceu neutro dentro do App)

Importante ressaltar que a Inteligência Artificial tenta ao máximo balancear os 20% dos erros nos 3 tipos de sentimento. Seria muito ruim que os erros fossem otimistas demais (enviesado para classificação com sentimento positivo) ou pessimistas demais (enviesado para classificação com sentimento negativo).

De qualquer forma, 80% de acerto em primeira análise é um número alto pois é comum que existam opiniões com sentimentos conflitantes mesmo em análise humana. Vamos pegar um exemplo?

Na opinião: “Vocês deveriam ter um botão maior no site”, você diria que é uma opinião com sentimento Negativo ou Neutro?

  • Humano 1: “Eu acho que Negativo: o fato do botão ser pequeno demais está danificando a experiência dos usuários em nosso site”
  • Humano 2: “Você está errado! Claramente é Neutro: o botão poderia ser maior mas isso foi uma simples e caridosa sugestão deste usuário”

Ok, mas os 80% de precisão é uma % definitiva? Não! Aqui na Birdie não temos ponto final, pois nossa tecnologia está em constante aprendizado.

A cada 3 meses fazemos uma revisão a partir das opiniões e análises já feitas pela tecnologia Birdie, e vamos aumentando esses 80% ao longo do caminho para entregar dados mais confiáveis e melhores insights.

Os usuários Birdie também podem colaborar com essa melhoria contínua dando feedback caso vejam alguma opinião no App, que desejam trocar o Contexto ou o Sentimento (que vimos no item 1 deste post). É nosso Feedback Loop.

b) O reaprendizado da Birdie

Em paralelo da ideia de precisão, temos casos específicos onde o mercado ou a linguagem também pode mudar.

Por exemplo: um narrador de futebol famoso fez com que a expressão “Ridículo” se tornasse algo positivo, e muitas pessoas usam isso para dar opiniões positivas sobre produtos. E agora, a tecnologia da Birdie entenderia isso ao longo do tempo? Sim!

Isso só é possível pois o time capacitado da Birdie é quem gera os modelos. Não usamos modelos prontos da Amazon ou do Google. É tecnologia proprietária nossa, um Machine Learning que vamos refinando ao longo do tempo.

Importante lembrar: quando falamos da precisão e aprendizado constantes, cada idioma tem seu próprio caminho. Se estou chegando próximo a 90% de precisão em inglês para uma categoria, posso ao mesmo tempo estar em 80% em alemão ainda. Linguagens/idiomas são conjuntos específicos dentro do universo de Inteligência Artificial.

3.As métricas do app Birdie

Falamos muito sobre a classificação e a predição dentro da tecnologia Birdie.

Mas como isso aparece para os usuários do App na prática? Como os usuários podem se beneficiar desses dados e entender a solução Birdie? É isso que veremos nesta parte do post.

a) Share of Reviews (número de opiniões) – métrica quantitativa

O Share of Reviews é o número absoluto de opiniões.

Lembrando que 1 Opinião nada mais é que 1 texto publicado por um consumidor dentro de alguma fonte, por ex: “1 opinião na Reddit” ou “1 opinião no Instagram”, e por aí vai.

b) Share of Voice (distribuição de opiniões) – métrica quantitativa

Já o Share of Voice é o recorte de algo mais específico.

Quer um exemplo? Posso ter o Share of Voice de:

-Uma marca na categoria

-Um produto dentro da marca

-Um atributo dentro do produto da marca, etc.

Com isso, consigo definir análises como: “O público que fala sobre X representa 20% nesta categoria Y”.

c) Birdie Score (-100 a +100) – métrica qualitativa

É a média da análise de Sentimento dos consumidores, calculada por: Análise de Sentimento Positiva menos Análise de Sentimento Negativa dividido por # total de Análises.

Faz sentido quando temos um volume mínimo de opiniões, dependendo de cada caso.

Quando o Birdie Score está em:

  • Valores negativos = Baixos níveis de satisfação entre usuários
  • +30 a +100 = Sucesso

d) Star Rating – métrica qualitativa

É a média das notas que o próprio consumidor deu, porém levando em consideração os comentários e não simplesmente a nota.

Fazemos isso pois há muitos casos confusos de consumidores, por exemplo: Consumidor dá Nota 1 de 5 (nota ruim), mas escreve: “Excelente produto, recomendo!”.

Ou seja, hoje a Birdie só coleta os dados de quem dá opinião/review (nossa matéria-prima). Não coletamos dados de quem só dá nota ou estrela sem review.

*Estamos trabalhando para também coletar a Star Rating somente da nota dada (sem necessitar de reviews)

e) Birdie Impact

É a consolidação dos aspectos de cada produto de uma marca.

Por ex: A geladeira X está puxando o Birdie Score da marca Y para baixo e a geladeira Z para cima.

4.Conclusão: Diferenciais/Bene´fícios Birdie

Após passarmos por Classificação, X, Y quero reiterar grandes diferenciais e benefícios que temos com a Birdie.ai:

  • A classificação da Birdie é completa pois além de Taxonomia, capta também Contexto e Sentimento (análise ABSA);
  • A Inteligência Artifical da Birdie está sempre aprendendo como melhorar as análises, é algo em constante andamento – e isso faz com que possíveis problemas como “opinião com sarcasmo” e afins sejam refinados e melhorados ao longo do tempo. A isso podemos chamar predição;
  • Ao contrário de um NPS que nos traz “detrator ou promotor” a partir de respostas, a Birdie através de Taxonomia e Contexto traz um detalhamento muito maior de feedbacks. Conseguimos trazer “O PORQUE” de forma oposta: analisando os comentários para trazer dados e insights.
  • Também ao contrário de um NPS, com a tecnologia da Birdie consigo ter insights acionáveis e claros em um tempo muito menor – ao invés de ter um conjunto de respostas que não me dizem nada.

Até a próxima!

Data Driven sem Visão: um problema em Customer Success

Ser guiado por dados em Customer Success é premissa obrigatória. Mas não é tudo.

Ao ler pela 4a ou 5a vez o clássico “O Lado Difícil das Situações Difíceis” de Ben Horowitz, me chamou a atenção: 

“A métrica aplicada à retenção de usuários não é detalhada o suficiente para servir de instrumento de gestão. Em decorrência, muitas novas empresas dão excessiva ênfase à métrica da retenção, mas não dedicam tempo suficiente a uma avaliação profunda da experiência efetiva do usuário. 

Isso costuma resultar numa corrida frenética atrás de números que não culmina num grande produto. É importante que a visão de um grande produto seja suplementada por uma forte disciplina métrica, mas se a Visão for substituída pela métrica você jamais conseguirá o que quer.”

Pelo que já vivi, eu traduziria para:

-Métrica sem Visão = Retenção a qualquer custo (à medida que a empresa cresce, possibilidade de pessoas burlando regras para atingir meta, por ex.)

-Métrica com Visão = Experiência, excelência e customer first caminhando junto com a retenção dos clientes.

Qual sua opinião?

Boas perguntas para fazer em pesquisas de satisfação 

Pesquisas de satisfação com clientes, usuários, consumidores são utilizadas para dar voz a quem mais importa.

Esses feedbacks podem munir sua empresa de dados e informações relevantes para constantemente evoluir processos, atendimento e projetos.

Escrevo este simples post para que possa guiar pessoas que desejam iniciar a fazer perguntas de satisfação com clientes.

Vamos lá!

Perguntas abertas

Permitem que o respondente escreva sua resposta em vez de selecionar opções.

Continuar lendo Boas perguntas para fazer em pesquisas de satisfação